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Abstract. In this paper, we study a special holomorphic family (M, π, R) of closed

Riemann surfaces of genus two over a fourth punctured torus R, which is a kind of a
Kodaira surface and is constructed by Riera. We give two explicit defining equations

for (M, π, R) by using elliptic functions, and determine all the holomorphic sections
of (M, π, R). Proofs will appear elsewhere.

1. Introduction

Let us consider a Diophantine equation
∑

i+j+k=N

AijkXiY jZk = 0 (1)

over the function field K of a closed Riemann surgace R̂. Here K is the field of all
meromorphic functions on R̂ and the coefficients Aijk are elements of K. The problem
is to find the solutions (X, Y,K) ∈ P 2(K) of the function equation (1) over R̂.

This problem is reformulated geometrically in the following way. It is assumed that
we find a Zariski open subset R of R̂ and a Zariski open subset M of the algebraic surface
M̂ defined by

M̂ = {([x, y, z], t) ∈ P 2(C)× R̂ |
∑

i+j+k=N

Aijk(t)xiyjzk = 0}

such that the holomorphic map π : M → R given by π([x, y, z], t) = t satisfies the two
conditions:

(1) π is of maximal rank at every point of M , and
(2) for every t ∈ R, the fiber St = π−1(t) of M over t is a Riemann surface of fixed

finite type (g, n), where g is the genus of St and n is the number of punctures of
St.

We call such a triplet (M, π, R) is a holomorphic family of Riemann surfaces of type
(g, n) over R.

We assume throughout this paper that a holomorphic family (M, π,R) of Riemann
surfaces is of type (g, n) with 2g − 2 + n > 0 and the base surface R is of finte type, i.e.,
a Riemann surface obtained by removing at most a finite number of points from a closed
Riemann surface.
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Two holomorphic families (M1, π1, R) and (M2, π2, R) of Riemann surfaces are called
isomorphic if there exists a biholomorphic map f : M1 → M2 with π1 = π2 ◦ f . A
holomorphic family (M, π, R) of Riemann surfaces is locally trivial if for every point
p0 ∈ R there exsits a neighborhood U0 of p0 in R such that (π−1(U0), π|π−1(U0), U0) is
isomorphic to the trivial holomorphic family (U0×Sp0 , π0, U0), where π0 : U0×Sp0 → U0

is the canonical projection. It is known that a holomorphic family (M, π,R) of Riemann
surfaces is locally trivial if and only if the fibers St are all isomorphic.

A holomorphic map s : R → M is said to be a holomorphic section of a holomorphic
family (M, π,R) of Riemann surfaces if s stisfies π ◦s = id on R. Note that if (X, Y,K) ∈
P 2(K) satisfies the function equation (1), then s(t) = ([X(t), Y [t], Z[t], t) gives rise to a
holomorphic section of (M, π,R).

By using theory of Teichmüller space, Imayoshi and Shiga in [6] gave a proof for a
finiteness theorem of sections (Mordell conjecture) and a finiteness theorem of families
(Shafarevich conjecture). See also Arakelov [1], Faltings [3], Grauert [4], Jost and Yau
[7], Manin [9], McMullen [10], and Parshin [11].

In this paper we deal with a special holomorphic family (M, π,R) of closed Riemann
surfaces of genus two over a fourth punctured torus R, which is a kind of a Kodaira
surface as [8] and is constructed by Riera in [12]. We give two explicit defining equations
for (M, π,R) by using elliptic functions, and determine all the holomorphic sections of
(M, π,R).

2. Construction of a certain holomorphic family (M, π,R) of Riemann
surfaces

Now we explain briefly a construction of our holomorphic family (M, π,R) of Riemann
surfaces, which is due to Riera [12].

Take a point τ in the upper half-plane H in the complex plane C. Let Γ1,τ be the
discrete subgroup of Aut(C) generated by two translations z 7→ z + 1 and z 7→ z + τ .
Denote by T̂ a torus defiend by the quotient space C/Γ1,τ = {[z] | z ∈ C}. We set
p0 = [0] ∈ T̂ and T = T̂ \ {p0}.

For a point p ∈ T we take two replicas of the torus T̂ cut along a simple arc from p
to p0, and call them sheet I and sheet II. The cut on each sheet has two edges, labeled
+ edge and − edge. To construct a Riemann surface Xp, we attach the + edge on sheet
I and the − edge on sheet II, and then attach the + edge on sheet II and the − edge on
sheet I. Then we obtain a closed Riemann surface Xp of genus two and the two-sheeted
covering Xp → T̂ which is branched over p0 and p with branch order 2. It should be
noted that the above procedure depends, of course, not only on the choice of the point
p but also on the choice of the “cut” from p to p0. Essentially we can take four different
“cuts” α1, α2, α3, and α4 between p and p0 (see Fig.1).

To specify the “cut” we construct a four-sheeted unbranched covering

ρ : R → T (2)

of T such that R is a torus with four punctures as follows: Let Γ2,2τ be the discrete
subgroup of Aut(C) generated by two translations z 7→ z + 2 and z 7→ z + 2τ . Denote
by R̂ a torus defiend by the quotient space C/Γ2,2τ = {[z] | z ∈ C}. Let ρ̂ : R̂ → T̂ be
the canonical projection given by ρ̂([z]) = [z]. We set R = ρ̂−1(T ) and ρ = ρ̂|R. The
good thing is that a point t = [z] ∈ R determines a point p = ρ([z]) ∈ T and a “cut”
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α = ρ̂(β) from p to p0 = [0], where β is a simple arc on R̂ from [0] to t. Denote by St the
closed Riemann surface of genus two which is a two-sheeted branched covering surface
of T̂ constructed by a “cut” α = ρ̂(β). Note that the two-sheeted branched covering
Πt : St → T̂ is uniquely determined by the choice of t ∈ R and does not depend on β.
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Figure 1. For each p ∈ T , there are precisely four two-sheeted branched
coverings Sti → T̂ , where ti ∈ R with ρ̂(ti) = p and the cut αi is given
by the projection ρ̂(βi) of a simple arc βi between [0] and ti on R̂.

Now we have the following theorem (see Riera [12]):

Theorem 1. In the above situation, let

M =
⊔

t∈R

{t} × St,

π : M → R, π(t, q) = t.

Then (M, π,R) is a holomorphic family of closed Riemann surfaces of genus two over a
fourth punctured torus R.

3. Defining equations for (M, π,R)

In this section we find defining equations for (M, π, R). For any point t = [ t̃ ] ∈ R,
Abel’s theorem shows there exists a meromorphic function ft on T̂ which has two zeros
[0] and ρ(t) of order one, and a pole qt = ρ(t)/2 of order two. Moreover in order
to determine ft uniquely, we assume that (dft/dz)([0]) = 1. This function ft is given
explicitly as follows (see Clemens [2]):
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ft([z]) =
1

θ′ (1/2 + τ/2)
× θ

(−t̃/2 + 1/2 + τ/2
)2

θ
(−t̃ + 1/2 + τ/2

) ×

θ (z + 1/2 + τ/2) θ
(
z − t̃ + 1/2 + τ/2

)

θ
(
z − t̃/2 + 1/2 + τ/2

)2 . (3)

Here the theta function θ(z, τ) is defined by

θ(z, τ) =
∞∑

k=−∞
eπi(k2τ+2kz), z ∈ C.

Then we have the following assertion:

Theorem 2. In the above situation, let

ME = {(t, p, w) ∈ R× T̂ × Ĉ | w2 = ft(p)},
πE : ME → R, πE(t, p, w) = t.

Then the triplet (ME , πE , R) is a holomorphic family of closed Riemann surfaces of genus
two, and it is isomorphic to (M, π, R) in Theorem 1.

We find another defining equation for (M, π,R). The holomorophic map ft : T̂ → Ĉ
has four branch points qt (pole), a(t), b(t), and c(t), where

a(t) = ft([(t̃ + 1)/2]),

b(t) = ft([(t̃ + τ)/2]),

c(t) = ft([(t̃ + 1 + τ)/2]).

Let gt be the meromorphic function on T̂ of degree 3 satisfying

(1) gt has simple zeros [(t̃ + 1)/2], [(t̃ + τ)/2], [(t̃ + 1 + τ)/2],
(2) gt has a pole [t̃] of order 3, and
(3) gt([0]) = i.

This function gt is given by

gt(z) = ie−2πiz× θ
(−t̃/2 + 1/2 + τ/2

)3

θ
(−t̃/2

)
θ
(−t̃/2 + 1/2

)
θ
(−t̃/2 + τ/2

)×

θ
(
z − t̃/2

)
θ
(
z − t̃/2 + 1/2

)
θ
(
z − t̃/2 + τ/2

)

θ
(
z − t̃/2 + 1/2 + τ/2

)3 .

Setting x = ft, y = gt, we have a functional relation

y2 =
1

a(t)b(t)c(t)
(x− a(t)) (x− b(t)) (x− c(t)) (4)

on T̂ .
Now we have the following theorem:
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Theorem 3. In the above situation, let

Pt(x) = (x2 − a(t))(x2 − b(t))(x2 − c(t)),

MHE = {(t, x, y) ∈ R× Ĉ× Ĉ | y2 = Pt(x)},
πHE : MHE → R, πHE(t, x, y) = t.

Then the triplet (MHE , πHE , R) is a holomorphic family of closed Riemann surfaces of
genus two, and it is isomorphic to (M, π, R) in Theorem 1.

4. Holomorphci sections (M, π, R)

Let us study the holomorphic sections of (M, π,R) in Theorem 1. The following is
our main theorem in this paper.

Theorem 4. The holomorphic family (M, π,R) of closed Riemann surfaces of genus two
in Theorem 1 has exactly two holomorphic sections s1, s2. These sections are given by
s1(t) = (t, p0) and s2(t) = (t, ρ(t)) for every t ∈ R.

In order to prove this theorem, we need the following two theorems (cf. Imayoshi [5],
Theorem 4 and Theorem 5):

Theorem 5. The holomorphic family (M, π,R) in Theorem 1 has a canonical completion
(M̂, π̂, R̂), where M̂ is a compact two dimensional normal complex analytic space and
π̂ : M̂ → R̂ is holomorphic. Moreover every holomorphic section s : R → M has a
holomorphic extension ŝ : R̂ → M̂ .

Theorem 6. The holomorphic map Π: M =
⊔

t∈R{t} × St → T̂ defined by Π(t, q) =
Πt(q) has a holomorphic extension Π̂ : M̂ → T̂ .

Theorem 6 is proved by Theorems 2, 3, and 5.
Now we can prove Theorem 4 as follows: Let s : R → M be an arbitrary holomorphic

section of (M, π,R). Theorem 5 and 6 imply that the holomorphic map ϕ = Π◦s : R → T̂

has a holomorphic extention ϕ̂ = Π̂ ◦ ŝ : R̂ → T̂ . Let ϕ̃ : C → C is a lift of ϕ̂ : R̂ → T̂ .
Then ϕ̃(z) = Az + B, z ∈ C for some constants A,B ∈ C. Since ϕ = Π ◦ s, we can show
that we may assume that A = 0, B = 0, or A = 1, B = 0. In the case A = 0, B = 0,
we have the section s1(t) = (t, p0), and in the case A = 1, B = 0, we have the section
s2(t) = (t, ρ[t]).
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